A New General Integral Operator Defined by Al-Oboudi Differential Operator

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New General Integral Operator Defined by Al-Oboudi Differential Operator

Serap Bulut Civil Aviation College, Kocaeli University, Arslanbey Campus, 41285 İzmit-Kocaeli, Turkey Correspondence should be addressed to Serap Bulut, [email protected] Received 8 December 2008; Accepted 22 January 2009 Recommended by Narendra Kumar Govil We define a new general integral operator using Al-Oboudi differential operator. Also we introduce new subclasses of analytic func...

متن کامل

Bi-concave Functions Defined by Al-Oboudi Differential Operator

The purpose of the present paper is to introduce a class $D_{Sigma ;delta }^{n}C_{0}(alpha )$ of bi-concave functions defined by Al-Oboudi differential operator. We find estimates on the Taylor-Maclaurin coefficients $leftvert a_{2}rightvert $ and $leftvert a_{3}rightvert$ for functions in this class. Several consequences of these results are also pointed out in the form of corollaries.

متن کامل

A new univalent integral operator defined by Al - Oboudi differential operator 1 Serap Bulut

In [3], Breaz and Breaz gave an univalence condition of the integral operator Gn,α introduced in [2]. The purpose of this paper is to give univalence condition of the generalized integral operator Gn,m,α defined in [4]. Our results generalize the results of [3]. 2000 Mathematics Subject Classification: 30C45.

متن کامل

Some Properties for an Integral Operator Defined by Al-oboudi Differential Operator

In this paper, we investigate some properties for an integral operator defined by Al-Oboudi differential operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2009

ISSN: 1029-242X

DOI: 10.1155/2009/158408